XC6VLX365TFF1759

发布时间:2020/11/3

XC6VLX365TFF1759_XC5VLX330T-1FFG1738C导读

电源估算、热模型、全面软件支持和演示板现已开始针对所有产品系列公开提供。Xilinx
器件可通过精选芯片工艺和功耗架构为所有产品组合实现高电源效率,包括 Spartan-6 系列及 7 系列、UltraScale? 以及 UltraScale+?
FPGA 和 SoC。对于每一代产品,Xilinx
都不断提升其节电功能,包括工艺改进、架构创新、电压缩放策略以及高级软件优化策略等。以下是特定产品组合功能的详细信息、芯片工艺优势和基准比较。

尤其是锐龙、霄龙处理器,从笔记本到桌面再到数据中心都硕果累累。 “AMD
Yes”是最近期间网友对AMD逐渐步入高光时刻的最大评价,自2014 年10
月苏姿丰升任总裁兼CEO,作风强势又极具亲和力的苏姿丰也被粉丝们亲切地称为“苏妈”。而显卡方面则也与NVIDIA打的“焦灼”,先后赢得了索尼、微软主机和三星手机的青睐。


XC6VSX315T-2FF1156I

与此前的平台相比,系统级单位功耗性能提高了 4 倍。它支持赛灵思 Vitis AI,后者为使用加速库构建
AI 推断提供了广泛功能。此外,它还提供了优异的高层次综合(HLS)功能。Softnautics 选择赛灵思 Ultrascale+
平台是因为它提供了最优秀的应用处理和 FPGA 加速功能。

如今,赛灵思丰富多样的强大平台已为 70% 的新开发提供支持,引领着基于 FPGA
系统的设计发展趋势。Softnautics 之所以选择赛灵思技术来实现这个解决方案,是因为它同时集成了 Vitis? AI 堆栈和强大的硬件功能。

FPGA的设计中使用了多种功耗驱动的设计技术。以Xilinx
Virtex系列为例,因为配置存储单元可占到FPGA中晶体管数的1/3,所以在该系列中使用了一种低漏电流的“midox”晶体管来减少存储单元的漏电流。DSP模块中乘法器的功耗不到FPGA架构所构建乘法器的20%。鉴于制造偏差可导致漏电流分布范围很大,可筛选出低漏电流器件,以有效提供核心漏电功耗低于60%的器件。动态功耗问题则用低电容电路和定制模块来解决。为了减少静态功耗,还全面采用了较长沟道和较高阈值的晶体管。

如果使用 ASIC 等固定功能的芯片实现 AI 网络,则可能因先进 AI
模型的高速创新而迅速过时。与此同时,AI 算法正在快速演进发展,且速度快于传统芯片开发周期的速度。


XC5VSX95T-1FF1136C

XCV200-6BG256AF XCV200-5PQG240I XCV200-5PQG240C
XCV200-5PQ240I XCV200-5PQ240C XCV2005PQ240C XCV200-5FGG456I XCV200-5FGG456C
XCV200-5FGG256I XCV200-5FGG256C XCV200-5FG456I XCV200-5FG456C XCV200-5FG456
XCV200-5FG256I XCV200-5FG256C XCV200-5BGG352I XCV200-5BGG352C 。

XC6VLX130T-1FFG1156C XC6VLX130T-3FFG1156C
XC6VLX195T-1FF1156C XC6VLX130T-3FF484C XC6VLX130T-3FFG484C XC6VLX130T-2FF484C
XC5VTX240T-2FF1759I XC5VTX240T-2FFG1759C XC5VTX240T-2FFG1759I
XC6VLX130T-1FFG484C XC6VLX130T-1FFG484I XC6VLX130T-1FFG784C XC6VLX130T-1FFG784I
XC6VLX130T-1FF484C XC5VSX95T-3FF1136C XC5VSX95T-2FFG1136I XC5VTX240T-1FF1759C
XC5VTX240T-3FF1759C XC5VTX240T-3FFG1759C XC6VLX130T-1FF1156C XC6VLX130T-1FF1156I

XC6VLX240T-1FF784I XC6VLX195T-2FF1156I
XC6VLX195T-2FF1156C XC6VLX195T-2FF784I XC6VLX195T-2FF784C XC6VLX130T-3FF1156C
XC6VLX130T-2FFG484C XC6VLX195T-3FFG1156C XC6VLX130T-2FFG784I XC6VLX240T-1FF1156C
XC6VLX195T-3FFG784C XC6VLX240T-1FF1759C XC6VLX240T-1FF1156I XC6VLX195T-1FF784C
XC6VLX130T-2FF784I XC6VLX130T-3FFG784C XC6VLX195T-1FF784I XC6VLX130T-2FFG1156C
XC6VLX130T-2FFG784C XC6VLX130T-2FF484I XC6VLX130T-2FFG1156I XC6VLX130T-1FF484I
XC6VLX130T-3FF784C XC6VLX130T-1FFG1156I 。

XC5VLX85-3FFG1153C XC5VLX85-3FFG676C
XC5VLX85T-1FF1136C XC5VLX85T-1FF1136I XC5VLX85-2FFG676I XC5VLX85-2FFG676C
XC5VLX85-3FF676C XC5VLX85-1FF1153I XC5VLX50T-3FFG1136C XC5VLX85-1FFG1153C
XC5VLX85-1FF1153C XC5VLX85-1FF676C XC5VLX85-1FFG1153I XC5VLX85-2FF1153C
XC5VLX85-1FF676I XC5VLX85-1FFG676C XC5VLX85-2FF1153I XC5VLX85-2FFG1153C
XC5VLX85-1FFG676I XC5VLX85-2FF676C XC5VLX85-2FFG1153I XC5VLX85-3FF1153C
XC5VLX85-2FF676I XC5VLX50T-1FF665I XC5VLX50T-1FFG1136C XC5VLX50T-1FFG1136I
XC5VLX50T-1FFG665I 。

XC6VLX365TFF1759_XC5VLX330T-1FFG1738C


因此,在用VivadoHLS实现OpenCV的设计中,需要将输入和输出HLS可综合的视频设计接口,修改为Video
stream接口,也就是采用HLS提供的video接口可综合函数,实现AXI4 video
stream到VivadoHLS中hls::Mat<>类型的转换。VivadoHLS视频处理函数库使用hls::Mat<>数据类型,这种类型用于模型化视频像素流处理,实质等同于hls::steam<>流的类型,而不是OpenCV中在外部memory中存储的matrix矩阵类型。

公司优势品牌:XILINX、ALTERA、SAMSUNG 、MICRON、HYNIX、NANYA
、ISSI、INTEL、TI、MAXIM、ADI、POWER、DAVICOM、PLX、CYPRESS、MARVELL、AOS、ON、ST、NXP、IR、FREESCALE、NS、AVAGO、TOSHIBA、DIODES
、RENESAS、
ATMEL、等..优势品牌。赛灵思代理简介历经了十几年的不懈努力,宇航军工半导体有限公司已经与美国、英国、德国、日本、韩国、国内等诸多著名的IC制造商和代理商以及OEM建立了良好的商务关系,代理经销了世界及国内众多著名品牌IC产品,客户遍及全世界。